In this article, we show that applying fuzzy reasoning to an object-arranged data set produces noticeably better results than applying it to a social data set by applying it to both social and object-situated data sets. A Relational Data Base Management System (RDBMS) product structure offers a practical and efficient way to locate, store, and retrieve accurate data included inside a data collection. In any case, clients typically have to make vague, ambiguous, or fanciful requests. Our work allows clients the freedom to utilise FRDB to examine the database in everyday language, enabling us to provide a range of solutions that would benefit clients in a variety of ways. Given that the degree of attributes in a fuzzy knowledge base goes from 0 to 1, the term "fuzzy" was coined. This is due to the base's fictitious formalization's reliance on fuzzy reasoning. In order to lessen the fuzziness of the fuzzy social data set as a result of the abundance of uncertainty and vulnerabilities in clinical medical services information, a fuzzy article located information base is designed here for the Health-Care space. In order to validate the presentation and sufficiency of the fuzzy logic on both data sets, certain fuzzy questions are thus posed of the fuzzy social data set and the fuzzy item-situated information base..