Due to the large coverage of 5G NB-IoT networks, a more realistic mobility model for a macroscopic scene will greatly facilitate the development of optimal radio resource management algorithms. However, models devised for a random motion scene are no longer applicable in circumstances. Therefore, in this paper, a city-level mobility model is proposed based on the feature mining of the real trajectory of vehicles in the city of Shenzhen. The proposed model is separately designed in the motion trajectory to reduce the mutual influence between the time and spatial sequence. Simulation results show that it can better present specific node motions with the physical constraints of the city layout, which are motivated with a high degree of fit in terms of self-similarity, hotspots, and long-tail features.