2021
DOI: 10.47119/ijrp100711220211768
|View full text |Cite
|
Sign up to set email alerts
|

Mining Student Behavioral Concern Through Referrals Using K-Means Clustering

Abstract: Monitoring students' behavior is one the main concerns faced by higher education institutions nowadays. Several procedures were taking into consideration to do the former statement and one of it is through referrals. The research aimed to cluster student behavior based on the referrals using K-Means algorithm. In this paper, students were clustered into two groups according to gender and year level. The result showed that the primary reasons of referrals among the male students were absences, tardiness, poor a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 13 publications
0
0
0
1
Order By: Relevance
“…Melakukan penentuan mata kuliah peminatan mahasiswa [15]. Mengelompokan prilaku mahasiswa berdasarkan ketidakhadiran, keterlambatan, nilai akademik [16]. Penelitian lainnya yang menggunakan algoritma k-means clustering dalam menentukan kepadatan permintaan dari berbagai jenis pekerjaan [17], melakukan zonasi suhu air waduk [18].…”
Section: Pendahuluanunclassified
“…Melakukan penentuan mata kuliah peminatan mahasiswa [15]. Mengelompokan prilaku mahasiswa berdasarkan ketidakhadiran, keterlambatan, nilai akademik [16]. Penelitian lainnya yang menggunakan algoritma k-means clustering dalam menentukan kepadatan permintaan dari berbagai jenis pekerjaan [17], melakukan zonasi suhu air waduk [18].…”
Section: Pendahuluanunclassified