2004
DOI: 10.1016/j.eswa.2003.12.013
|View full text |Cite
|
Sign up to set email alerts
|

Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
76
0
4

Year Published

2005
2005
2021
2021

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 178 publications
(80 citation statements)
references
References 39 publications
0
76
0
4
Order By: Relevance
“…Successful applications have been found in genomics and proteomics [11][12], cancer detection [13][14][15], heart rate variability (HRV) analysis [16], etc. For example, Chou et al used artificial neural networks to diagnose breast cancer and achieved 98 percent accuracy [15].…”
Section: Introductionmentioning
confidence: 99%
“…Successful applications have been found in genomics and proteomics [11][12], cancer detection [13][14][15], heart rate variability (HRV) analysis [16], etc. For example, Chou et al used artificial neural networks to diagnose breast cancer and achieved 98 percent accuracy [15].…”
Section: Introductionmentioning
confidence: 99%
“…MARS has also been applied to predict the average monthly foreign exchange rates [12], to model credit scoring [13], and for data mining on breast cancer pattern [14]. In all of the cited studies, promising results have been reported where MARS has been employed either for forecasting or for data mining purposes.…”
Section: A Marsmentioning
confidence: 91%
“…Este sistema logra un porcentaje de aciertos en la clasificación del 98.1%. (Chou et al, 2004) Propone un modelo de clasificación de datos para identificar el cáncer de mama, integrando un modelo de regresión adaptativa a una red neuronal, obteniéndose resultados del 99.7% de efectividad en la detección de esta enfermedad. (Sahan et al, 2007) Propone un sistema inmune basado en una máquina de aprendizaje para la detección del cáncer de mama.…”
Section: Introductionunclassified