Leaf morphological differences have an impact on light distribution within the leaf, photosynthesis, and photoprotection in Arabidopsis thaliana ecotypes from near the limits of this species' latitudinal distribution in Europe. Leaf morphology, photosynthesis, and photoprotection were characterized in two Arabidopsis ecotypes from near the limits of this species' latitudinal distribution in Europe (63°N and 42°N). The Swedish ecotype formed thicker leaves and upregulated photosynthesis more substantially than the Italian ecotype in high-light environments. Conversely, the smaller rosette formed, and lesser aboveground biomass accumulated, by the Swedish versus the Italian ecotype in low growth-light environments is consistent with a lesser shade tolerance of the Swedish ecotype. The response of the thinner leaves of the Italian ecotype to evenly spaced daily periods of higher light against a background of otherwise non-fluctuating low light was to perform the same rate of photosynthesis with less chlorophyll, rather than exhibiting greater rates of photosynthesis. In contrast, the thicker leaves of the Swedish ecotype showed elevated photosynthetic performance in response to daily supplemental higher light periods in a low-light growth environment. These findings suggest significant self-shading in the lower depths of leaves of the Swedish ecotype by the chloroplasts residing in the upper portions of the leaf, resulting in a requirement for higher incident light to trigger photosynthetic upregulation in the lower portions of its thicker leaves. Conversely, photoprotective responses in the Italian ecotype suggest that more excess light penetrated into the lower depths of this ecotype's leaves. It is speculated that light absorption and the degree of utilization of this absorbed light inform cellular signaling networks that orchestrate leaf structural development, which, in turn, affects light distribution and the level of absorbed versus photosynthetically utilized light in a leaf.