Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The mechanisms of coronavirus disease 2019 (COVID-19)–related myocardial injury comprise both direct viral invasion and indirect (hypercoagulability and immune-mediated) cellular injuries. Some patients with COVID-19 cardiac involvement have poor clinical outcomes, with preliminary data suggesting long-term structural and functional changes. These include persistent myocardial fibrosis, edema, and intraventricular thrombi with embolic events, while functionally, the left ventricle is enlarged, with a reduced ejection fraction and new-onset arrhythmias reported in a number of patients. Myocarditis post-COVID-19 vaccination is rare but more common among young male patients. Larger studies, including prospective data from biobanks, will be useful in expanding these early findings and determining their validity.
The mechanisms of coronavirus disease 2019 (COVID-19)–related myocardial injury comprise both direct viral invasion and indirect (hypercoagulability and immune-mediated) cellular injuries. Some patients with COVID-19 cardiac involvement have poor clinical outcomes, with preliminary data suggesting long-term structural and functional changes. These include persistent myocardial fibrosis, edema, and intraventricular thrombi with embolic events, while functionally, the left ventricle is enlarged, with a reduced ejection fraction and new-onset arrhythmias reported in a number of patients. Myocarditis post-COVID-19 vaccination is rare but more common among young male patients. Larger studies, including prospective data from biobanks, will be useful in expanding these early findings and determining their validity.
Background: Myocarditis, diagnosed by symptoms and troponin elevation, has been well-described with COVID-19 infection, as well as shortly after COVID-19 vaccination. The literature has characterized the outcomes of myocarditis following COVID-19 infection and vaccination, but clinicopathologic, hemodynamic, and pathologic features following fulminant myocarditis have not been well-characterized. We aimed to compare clinical and pathological features of fulminant myocarditis requiring hemodynamic support with vasopressors/inotropes and mechanical circulatory support (MCS), in these two conditions. Methods: We analyzed the literature on fulminant myocarditis and cardiogenic shock associated with COVID-19 and COVID-19 vaccination and systematically reviewed all cases and case series where individual patient data were presented. We searched PubMed, EMBASE, and Google Scholar for “COVID”, “COVID-19”, and “coronavirus” in combination with “vaccine”, “fulminant myocarditis”, “acute heart failure”, and “cardiogenic shock”. The Student’s t-test was used for continuous variables and the χ2 statistic was used for categorical variables. For non-normal data distributions, the Wilcoxon Rank Sum Test was used for statistical comparisons. Results: We identified 73 cases and 27 cases of fulminant myocarditis associated with COVID-19 infection (COVID-19 FM) and COVID-19 vaccination (COVID-19 vaccine FM), respectively. Fever, shortness of breath, and chest pain were common presentations, but shortness of breath and pulmonary infiltrates were more often present in COVID-19 FM. Tachycardia, hypotension, leukocytosis, and lactic acidosis were seen in both cohorts, but patients with COVID-19 FM were more tachycardic and hypotensive. Histologically, lymphocytic myocarditis dominated both subsets, with some cases of eosinophilic myocarditis in both cohorts. Cellular necrosis was seen in 44.0% and 47.8% of COVID-19 FM and COVID-19 vaccine FM, respectively. Vasopressors and inotropes were used in 69.9% of COVID-19 FM and in 63.0% of the COVID-19 vaccine FM. Cardiac arrest was observed more in COVID-19 FM (p = 0.008). Venoarterial extracorporeal membrane oxygenation (VA-ECMO) support for cardiogenic shock was also used more commonly in the COVID-19 fulminant myocarditis group (p = 0.0293). Reported mortality was similar (27.7%) and 27.8%, respectively) but was likely worse for COVID-19 FM as the outcome was still unknown in 11% of cases. Conclusions: In the first series to retrospectively assess fulminant myocarditis associated with COVID-19 infection versus COVID-19 vaccination, we found that both conditions had a similarly high mortality rate, while COVID-19 FM had a more malignant course with more symptoms on presentation, more profound hemodynamic decompensation (higher heart rate, lower blood pressure), more cardiac arrests, and higher temporary MCS requirements including VA-ECMO. In terms of pathology, there was no difference in most biopsies/autopsies that demonstrated lymphocytic infiltrates and some eosinophilic or mixed infiltrates. There was no predominance of young males in COVID-19 vaccine FM cases, with male patients representing only 40.9% of the cohort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.