mda-9/Syntenin (melanoma differentiation-associated gene 9) is a PDZ domain-containing, cancer invasion-related protein. In this study, we employed multiple integrated bioinformatic approaches to identify the probable epigenetic factors, molecular pathways, and functionalities associated with mda-9 dysregulation during cancer progression. Analyses of publicly available genomic data (e.g., expression, copy number, methylation) from TCGA, GEO, ENCODE, and Human Protein Atlas projects led to the following observations: a) mda-9 expression correlates with both copy number and methylation level of an intronic CpG site (cg17197774) located downstream of the CpG island, b) cg17197774 methylation is a likely prognostic marker in glioma, c) Among 22 cancer types, melanoma exhibits the highest mda-9 level, and lowest level of methylation at cg17197774, d) cg17197774 hypomehtylation is also associated with histone modifications (at the mda-9 locus) indicative of more active transcription, e) Using Gene Set Enrichment Analysis (GSEA), and the VIGOR (Virtual Gene Over-expression or Repression ) analytical scheme, we were able to predict mda-9’s association with extracellular matrix organization (e.g., MMPs, collagen, integrins), IGFBP2 and NF-κB signaling pathways, phospholipid metabolism, cytokines (e.g., interleukins), CTLA-4, and components of complement cascade pathways. Indeed, previous publications have shown that many of the aforementioned genes and pathways are associated with mda-9’s functionality.