The miR-17-92 cluster, led by its most prominent member, miR-17-5p, has been identified as the first miRNA with oncogenic potential. Thus, the whole cluster containing miR-17-5p has been termed oncomiR-1. It is strongly expressed in embryonic stem cells and has essential roles in vital processes like cell cycle regulation, proliferation and apoptosis. The importance of miR-17-5p for fundamental biological processes is underscored by the fact that a miR17-deficient mouse is neonatally lethal. Recently, miR-17-5p was identified in the context of aging, since it is comprised in a common signature of miRNAs that is downregulated in several models of aging research. Recently, miR-17-5p turned out to be the first ‘longevimiR' in an animal model, extending the lifespan of a transgenic miR-17-5p-overexpressing mouse. Here, we summarize the current status of research on miR-17-5p with emphasis on its role in cellular senescence, aging and cancer, which points to a pleiotropic function of miR-17-5p regulating multiple targets involved in autophagy, cell cycle regulation and apoptosis in a tissue-dependent fashion. In addition, its elevated presence in serum or plasma of a wide range of tumor patients suggests using it as an ‘alarmiR', a general indicator of a potential tumor pathology. However, amounts of circulating miR-17-5p of healthy individuals as reference values are still missing, before any miRNA can be classified as such an ‘alarmiR'. In conclusion, miR-17-5p is at the crossroads of aging, longevity and cancer and might represent a promising biomarker or even therapeutic tool and target in this context.