Purpose: Clinical efficacy of CAR T cells against pediatric osteosarcoma (OS) has been limited. One strategy to improve efficacy may be to drive chemokine-mediated homing of CAR T cells to tumors. We investigated the primary chemokines secreted by OS and evaluated efficacy of B7-H3.CAR T cells expressing the cognate receptors. Experimental Design: We developed a pipeline to identify chemokines secreted by OS by correlating RNA-seq data with chemokines detected in media from fresh surgical specimens. We identified CXCR2 and CXCR6 as promising receptors for enhancing CAR T cell homing against OS. We evaluated the homing kinetics and efficiency of CXCR2- and CXCR6.T cells and homing, cytokine production, and antitumor activity of CXCR2- and CXCR6.B7-H3.CAR T cells in vitro and in vivo. Results: T cells transgenically expressing CXCR2 or CXCR6 exhibited ligand-specific enhanced migration over T cells modified with nonfunctional receptors. Differential homing kinetics were observed, with CXCR2.T cells homing quickly and plateauing early, while CXCR6.T cells homed more slowly but achieved a similar plateau. When expressed in B7-H3.CAR T cells, CXCR2- and CXCR6 modification conferred enhanced homing towards OS in vitro and in vivo. CXCR2- and CXCR6-B7-H3.CAR treated mice experienced prolonged survival in a metastatic model compared to B7-H3.CAR T cell treated mice. Conclusions: Our patient-based pipeline identified targets for chemokine receptor modification of CAR T cells targeting OS. CXCR2 and CXCR6 expression enhanced homing and anti-OS activity of B7-H3.CAR T cells. These findings support clinical evaluation of CXCR-modified CAR T cells to improve adoptive cell therapy for OS patients.