BackgroundTriple-negative breast cancer (TNBC) remains a poor prognostic factor for breast cancer since no effective targeted therapy is readily available. Our previous studies confirmed miR-199a-5p is a TNBC-specific circulating biomarker, however, its functional roles in breast cancer is largely unknown. Thus, we investigated the functional implication of miR-199a-5p in TNBC and its potential underlying mechanisms.MethodsMTT assay was performed to investigate the cell proliferation after transient transfection of miR-199a-5p in MDA-MB-231 cell line, followed by cell cycle analysis. Transwell invasion assay and wound healing assay were used to study the invasion and migration ability respectively. To further investigate the stemness-related characteristics of miR-199a-5p in breast cancer cells, single-cell clonogenic assay and aldehyde dehydrogenase (ALDH) assay were performed. 32 normal and 100 breast cancer patients’ plasma were recruited to identify the potential circulating markers by qPCR.ResultsCell proliferation assay revealed significant inhibition after miR-199a-5p ectopic expression (p < 0.0001), as a result of decreased S phase (p = 0.0284), increased G0/G1 phase (p = 0.0260) and apoptosis (p = 0.0374). Invasiveness (p = 0.0005) and wound healing ability were also decreased upon miR-199a-5p overexpression. It significantly altered EMT-related genes expression, namely CDH1, ZEB1 and TWIST. Single-cell clonogenic assay showed decreased colonies in miR-199a-5p (p = 0.0182). Significant downregulation (p = 0.0088) and inhibited activity (p = 0.0390) of ALDH was observed in miR-199a-5p. ALDH1A3, which is the dominant isoform of ALDH, is significantly upregulated in breast cancer plasma especially in TNBC (p = 0.0248). PIK3CD was identified as a potential downstream target of miR-199a-5p.ConclusionsTaken together, we unraveled, for the first time, the tumor-suppressive role of miR-199a-5p in TNBC, which attributed to EMT and cancer stemness properties, providing a novel therapeutic options towards this aggressive disease.