As life expectancy rises, the prevalence of heart failure is steadily increasing, while donors for organ transplantation remain in short supply (Zwi-Dantsis and Gepstein, 2012). Indeed, myocardial infarction represents the foremost cause of death within industrialized nations (Henning, 2011) and further, approximately 1% of all newborns harbor a congenital heart defect. Although medical interventions allow > 80% of those with cardiac defects to survive to adulthood, there are often extreme emotional and financial burdens that accompany such congenital anomalies, and many individuals will remain at a heightened risk for myocardial infarction throughout the remainder of their lives (Verheugt et al., 2010;Amianto et al., 2011). In this review, we will discuss the nature of the failing heart and strategies for repair from an epigenetic standpoint. Significant focus will reside on pluripotent-to-cardiomyocyte differentiation for cell replacement, epigenetic mechanisms of cardiomyocyte differentiation, epigenetic "memories," and epigenetic control of cardiomyocyte cell fate toward translational utility.