Breast cancer, a complex and heterogeneous ailment impacting numerous women worldwide, persists as a prominent cause of cancer‐related fatalities. MicroRNAs (miRNAs), small non‐coding RNAs, have garnered significant attention for their involvement in breast cancer's progression. These molecules post‐transcriptionally regulate gene expression, influencing crucial cellular processes including proliferation, differentiation, and apoptosis. This review provides an overview of the current research on the role of miRNAs in breast cancer. It discusses the role of miRNAs in breast cancer, including the different subtypes of breast cancer, their molecular characteristics, and the mechanisms by which miRNAs regulate gene expression in breast cancer cells. Additionally, the review highlights recent studies identifying specific miRNAs that are dysregulated in breast cancer and their potential use as diagnostic and prognostic biomarkers. Furthermore, the review explores the therapeutic potential of miRNAs in breast cancer treatment. Preclinical studies have shown the effectiveness of miRNA‐based therapies, such as antagomir and miRNA mimic therapies, in inhibiting tumor growth and metastasis. Emerging areas, including the application of artificial intelligence (AI) to advance miRNA research and the “One Health” approach that integrates human and animal cancer insights, are also discussed. However, challenges remain before these therapies can be fully translated into clinical practice. In conclusion, this review emphasizes the significance of miRNAs in breast cancer research and their potential as innovative diagnostic and therapeutic tools. A deeper understanding of miRNA dysregulation in breast cancer is essential for their successful application in clinical settings. With continued research, miRNA‐based approaches hold promise for improving patient outcomes in this devastating disease.