Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), play increasingly important roles in pathological processes involved in disease development. However, whether mRNAs interact with miRNAs and lncRNAs to form an interacting regulatory network in diseases remains unknown. In this study, the interaction of coexpressed mRNAs, miRNAs and lncRNAs during tumor growth factor-β1-activated (TGF-β1) epithelial-mesenchymal transition (EMT) was systematically analyzed in human alveolar epithelial cells. For EMT regulation, 24 mRNAs, 11 miRNAs and 33 lncRNAs were coexpressed, and interacted with one another. The interaction among coexpressed mRNAs, miRNAs and lncRNAs were further analyzed, and the results showed the lack of competing endogenous RNAs (ceRNAs) among them. The mutual regulation may be correlated with other modes, such as histone modification and transcription factor recruitment. However, the possibility of ceRNA existence cannot be ignored because of the generally low abundance of lncRNAs and frequent promiscuity of protein-RNA interactions. Thus, conclusions need further experimental identification and validation. In this context, disrupting many altered disease pathways remains one of the challenges in obtaining effective pathway-based therapy. The reason being that one specific mRNA, miRNA or lncRNA may target multiple genes that are potentially implicated in a disease. Nevertheless, the results of the present study provide basic mechanistic information, possible biomarkers and novel treatment strategies for diseases, particularly pulmonary tumor and fibrosis.