Background: Hepatic fibrosis is a worldwide incurable disease; due to the complex and unclear mechanism, there lack the effective therapeutic targets. However, the mechanism of miR-23a-5p underling this pathological process is largely not clear.The purpose of this study was to investigate the role of miR-23a-5p in hepatic fibrosis and HSC activation. Methods: The content of miR-23a-5p in hepatic fibrosis induced by Nnitrosodimethylamine (NDMA) and HSC activation induced by platelet-derived growth factor (PDGF) was detected by qRT-PCR. H&E staining, Masson staining and Shear wave electrography (SWE) were used to detect the degree of hepatic fibrosis. Immunohistochemistry staining, qRT-PCR and Western blot detect the related markers of liver fibrosis or HSC activation, as well as the related pathway genes and proteins. Dual-luciferase reporter system verifies the interaction between miR-23a-5p with PTEN or miR-23a-5p with lncRNA LOC102551149 in HSC-T6. siRNA and miRNA mimic transfer to HSC-T6 to detect the function of lncRNA LOC102551149 and miR-23a-5p on HSC activation. Results: After hepatic fibrosis and HSC activation happened, the expression of miR-23a-5p was up-regulated, whereas anti-miR-23a-5p can alleviate hepatic fibrosis and HSC activation. Further research shows miR-23a-5p can target PTEN and degrade it, causing activation of PI3K/Akt/mTOR/Snail pathway. lncRNA LOC102551149 can be used as a competition endogenous RNA (ceRNA) targeting miR-23a-5p through base pairing, and siRNA LOC102551149 or exogenous miR-23a-5p can induce HSC activation through PI3K/Akt/mTOR/Snail pathway. Conclusion: We demonstrate mechanism pathway of miR-23a-5p on hepatic fibrosis and HSC activation, which may develop a therapeutic target for hepatic fibrosis. K E Y W O R D S hepatic fibrosis, HSC activation, lncRNA LOC102551149, miR-23a-5p, PI3K/Akt, PTEN 2 of 14 | DONG et al.