Background
Granulosa cells (GCs) proliferation and estradiol synthesis significantly affect follicular development. The miR-214-3p expression in the ovarian tissues of high-yielding sows is higher than that in low-yielding sows, indicating that miR-214-3p may be involved in sow fertility. However, the functions and mechanisms of miR-214-3p on GCs are unclear. This study focuses on miR-214-3p in terms of the effects on GCs proliferation and estradiol synthesis.
Results
Our findings revealed that miR-214-3p promotes proliferation and inhibits estradiol synthesis in porcine GCs. MiR-214-3p can increase the percentage of S-phase cells, the number of EdU labeled positive cells, and cell viability. However, E2 concentration was reduced after miR-214-3p agomir treatment. We also found that miR-214-3p up-regulates the expression of cell cycle genes including cell cycle protein B (Cyclin B), cell cycle protein D (Cyclin D), cell cycle protein E (Cyclin E), and cyclin-dependent kinase 4 (CDK4) at the transcription and translation levels, but down-regulates the mRNA and protein levels of cytochrome P450 family 11 subfamily A member 1 (CYP11A1), cytochrome P450 family 19 subfamily A member 1 (CYP19A1), and steroidogenic acute regulatory protein (StAR) (i.e., the key enzymes in estradiol synthesis). On-line prediction, bioinformatics analysis, a luciferase reporter assay, RT-qPCR, and Western blot results showed that the target genes of miR-214-3p in proliferation and estradiol synthesis are Mfn2 and NR5A1, respectively.
Conclusions
Our findings suggest that miR-214-3p plays an important role in the functional regulation of porcine GCs and therefore may be a target gene for regulating follicular development.