Future colliders will operate at increasingly high magnetic fields pushing limits of electromagnetic and mechanical stress on the conductor [1]. Understanding factors affecting superconducting (SC) magnet performance in challenging conditions of high mechanical stress and cryogenic temperatures is only possible with the use of advanced magnet diagnostics. Diagnostics provide a unique observation window into mechanical and electromagnetic processes associated with magnet operation, and give essential feedback to magnet design, simulations and material research activities. Development of novel diagnostic capabilities is therefore an integral part of next-generation magnet development. In this paper, we summarize diagnostics development needs from a prospective of the US Magnet Development Program (MDP), and define main research directions that could shape this field in the near future.