We investigated whether semi-rigid and non-rigid π-conjugated fluorophores in the photoexcited (S1) and ground (S0) states exhibited mirror symmetry by circularly polarized luminescence (CPL) and circular dichroism (CD) spectroscopy using a range of compounds dissolved in achiral liquids. The fluorophores tested were six perylenes, six scintillators, 11 coumarins, two pyrromethene difluoroborates (BODIPYs), rhodamine B (RhB), and 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM). All the fluorophores showed negative-sign CPL signals in the ultraviolet (UV)–visible region, suggesting energetically non-equivalent and non-mirror image structures in the S1 state. The dissymmetry ratio of the CPL (glum) increased discontinuously from approximately −0.2 × 10−3 to −2.0 × 10−3, as the viscosity of the liquids increased. Among these liquids, C2-symmetrical stilbene 420 showed glum ≈ −0.5 × 10−3 at 408 nm in H2O and D2O, while, in a viscous alkanediol, the signal was amplified to glum ≈ −2.0 × 10−3. Moreover, BODIPYs, RhB, and DCM in the S0 states revealed weak (−)-sign CD signals with dissymmetry ratios (gabs) ≈ −1.4 × 10−5 at λmax/λext. The origin of the (−)-sign CPL and the (−)-sign CD signals may arise from an electroweak charge at the polyatomic level. Our CPL and CD spectral analysis could be a possible answer to the molecular parity violation hypothesis based on a weak neutral current of Z0 boson origin that could connect to the origin of biomolecular handedness.