Mirrored disks or RAID1 is a popular disk array paradigm, which in addition to fault-tolerance, doubles the data access bandwidth. This is important in view of rapidly increasing disk capacities and the slow improvement in disk access time. Caching of dirty data blocks in a non-volatile storage (NVS) cache allows the destaging of dirty blocks to be deferrable, so as to improve the response time of read requests by giving them a higher priority than write requests. Destaging of dirty blocks in batches to take advantage of disk geometry entails in lowered disk utilization due to writes and improved performance for reads. Polyzois et al. [12] propose a scheduling policy for mirrored disks equipped with an NVS cache, so that one disk processes read requests, while the other disk is processing a write batch according to the CSCAN policy. We propose an improved scheduling policy as follows: (i) eliminating the forced idleness caused by the batch processing paradigm for write requests, i.e., allowing write requests to be processed individually; (ii) using SATF or even an exhaustive search, to reduce destaging time compared to CSCAN; (iii) introducing a threshold for the number of read requests, which when exceeded defers the destaging of dirty blocks. We compare these two scheduling policies with each other and also against prioritizing the processing of reads versus writes: (i) the head-of-the-line (HOL) priority queueing discipline, (ii) SATF with conditional priorities. It follows from simulation results that the new method outperforms Polyzois' method, which is even outperformed by the HOL priority policy. SATF with conditional priorities slightly outperforms the proposed method from the viewpoint of its throughput and response time, but is susceptible to more variability in response time.