Gold nanoparticles are formed to cover the surface of sulfonated‐polystyrene (PS) beads by the in‐situ ion‐exchange and chemical reduction of a stable cationic gold ligand, which makes it different from the physical adsorption or multiple electroless metallization methods. PS beads are synthesized by dispersion polymerization with a diameter of 2.7 µm, and their surface is modified by introducing sulfonic acid groups (SO) to give an ion exchange capacity of up to 2.25 mequiv. · g−1, which provides 1.289 × 1010 SO per bead. Subsequently, the anionic surface of the PS beads is incorporated with a cationic gold ligand, dichlorophenanthrolinegold(III) chloride ([AuCl2(phen)]Cl), through an electrostatic interaction in the liquid phase to give gold nanoparticles (ca. 1–4 nm in diameter) formed on the PS surface. Assuming that approximately three SO groups interact with one [AuCl2(phen)]+ ion in the ion‐exchange process, the gold coverage on a PS bead is estimated as 12.0 wt.‐%, which compares well with the 16.8 wt.‐% of gold loading measured by inductively coupled plasma–mass spectrometry. Because of the adjustable IEC values of the polymer surface and the in‐situ metallization of Au in the presence of S atoms, both of which are of a soft nature, the developed methodology could provide a simple and controllable route to synthesize a robust metal coating on the polymer bead surface.magnified image