A new quaternized polysulfone with triphenylphosphonium pendant groups was synthesized by reacting chloromethylated polysulfone with triphenylphosphine. The molecular restructurations, generated by hydrogen bonding, electrostatic interactions, and association phenomena in ternary quaternized polysulfone/N,N-dimethylformamide (solvent)/water (nonsolvent) systems, were evaluated by rheological investigations. The polyelectrolyte effect, induced by enhanced dissociation of the ionizable groups and by mixed solvents' quality, modify the rheological functions, that is, dynamic viscosity, elastic shear modulus, and viscous shear modulus, as well as the thermodynamic parameters obtained from the rheological properties, such as apparent activation energy. These results were correlated with the morphological properties of the films obtained from solutions in solvent/nonsolvent mixtures and compared with other quaternized polysulfones, having different hydrophobic characteristics.