IntroductionMultiple myeloma (MM) is a frequent and still incurable plasma cell malignancy, causing 2% of all cancer deaths. In recent years, treatment of MM has improved remarkably. For example, the proteasome inhibitor (PI) bortezomib (PS-341) proved effective even in the context of heavily pretreated, relapsed, and refractory MM, 1-3 although more than 50% of patients fail to respond to second-line treatment. 4 The molecular bases of different individual responsiveness to bortezomib remain unclear. Age (Ͻ 65 years) and extent of bone marrow plasma cell infiltration (Ͻ 50%) are the conventional factors for successful treatment identified so far. [5][6][7] Identifying the molecular bases underlying PI sensitivity would provide the framework for their improved clinical application.Bortezomib targets the proteasome, a 2.4-MDa multicatalytic protease complex ubiquitously expressed in eukaryotic cells. 1,8 Crucial for degrading proteins involved in cell cycle, angiogenesis, adhesion, cytokine production, and apoptosis, 3,9,10 proteasome inhibition can affect tumor cell growth via direct and indirect mechanisms (eg, by blocking interactions with endothelial and bone cells). 8,11 Proteasomes also dismantle damaged and misfolded/unfolded proteins, which are potentially harmful for the cell. 8 As a result, proteasome impairment causes buildup of polyubiquitinated proteins and eventual cell death. 3 Proteasomes also degrade a significant proportion of newly synthesized proteins in mammalian cells (rapidly degraded polypeptides [RDPs]). 12 Thus, increased protein synthesis or other metabolic unbalances could increase proteasome workload.We recently showed that plasma cell differentiation in vitro, ex vivo, and in vivo entails a dramatic decrease in proteasome expression and activity, correlating with increased sensitivity to PIs. 13,14 Indeed, PIs reduce antibody (Ab) responses in vivo. 14,15 Moreover, inducible expression of orphan Ig-chains sensitizes nonlymphoid tumor cells to PI-induced toxicity. 13 In MM cells (MMCs), the levels of both Ig synthesis and retention correlate with apoptotic sensitivity to PIs, and manipulating Ig synthesis alters sensitivity. 16,17 Altogether, these data suggest that the exquisite sensitivity of certain MMCs to PIs could stem from decreased proteasomal capacity, increased proteasomal workload, or both (ie, an adverse load-versus-capacity ratio).In this study, we exploited MM lines with differential apoptotic sensitivity to PIs to address if proteasome expression and degradative workload vary among different clones, and defined their role in The online version of this article contains a data supplement.The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked ''advertisement'' in accordance with 18 USC section 1734. For personal use only. on May 9, 2018. by guest www.bloodjournal.org From determining apoptotic sensitivity to PIs. Moreover, using primary patient-derived MMCs, we revealed ...