Abstract:The neural processes of bird song and song development have become a model for research relevant to human acquisition of language, but in fact, very few avian species have been tested for lateralization of the way in which their audio-vocal system is engaged in perception, motor output and cognition. Moreover, the models that have been developed have been premised on birds with strong vocal dimorphism, with a tendency to species with complex social and/or monomorphic song systems. The Australian magpie (Gymnorhina tibicen) is an excellent model for the study of communication and vocal plasticity with a sophisticated behavioural repertoire, and some of its expression depends on functional asymmetry. This paper summarizes research on vocal mechanisms and presents field-work results of behavior in the Australian magpie. For the first time, evidence is presented and discussed about lateralized behaviour in one of the foremost songbirds in response to specific and specialized auditory and visual experiences under natural conditions. It presents the first example of auditory lateralization evident in the birds' natural environment by describing an extractive foraging event that has not been described previously in any avian species. It also discusses the first example of auditory behavioral asymmetry in a songbird tested under natural conditions.