2020
DOI: 10.2298/csis190710003v
|View full text |Cite
|
Sign up to set email alerts
|

Missing data imputation in cardiometabolic risk assessment: A solution based on artificial neural networks

Abstract: A common problem when working with medical records is that some measurements are missing. The simplest and the most common solution, especially in machine learning domain, is to exclude records with incomplete data. This approach produces datasets with reduced statistical power and can even lead to biased or erroneous final results. There are, however, many proposed imputing methods for missing data. Although some of them, such as multiple imputation, are mature and well researched, they can be prone to misuse… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 0 publications
0
0
0
Order By: Relevance