2009
DOI: 10.1007/s11222-009-9143-x
|View full text |Cite
|
Sign up to set email alerts
|

Missing data mechanisms and their implications on the analysis of categorical data

Abstract: We review some issues related to the implications of different missing data mechanisms on statistical inference for contingency tables and consider simulation studies to compare the results obtained under such models to those where the units with missing data are disregarded. We confirm that although, in general, analyses under the correct missing at random and missing completely at random models are more efficient even for small sample sizes, there are exceptions where they may not improve the results obtaine… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
2

Year Published

2011
2011
2018
2018

Publication Types

Select...
4
2
2

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(8 citation statements)
references
References 33 publications
0
6
0
2
Order By: Relevance
“…The highest percentage of missing values in this study was 30% for one of the variables, and the sample size of 358 was judged to be adequate to estimate the missing data. When utilizing IBM Amos, Bayesian analysis is conducted for ordered categorical data and the Markov Chain Monte Carlo (MCMC) algorithm is employed to draw random values of the parameters from joint posterior distributions (Arbuckle, 2014b;Grace, 2015;Poleto, Singer, & Paulino, 2011). When dichotomous variables are used in an Amos model, additional constraints must be added to identify the model (Arbuckle, 2014a;Grace, 2015;IBM, 2015).…”
Section: Discussionmentioning
confidence: 99%
“…The highest percentage of missing values in this study was 30% for one of the variables, and the sample size of 358 was judged to be adequate to estimate the missing data. When utilizing IBM Amos, Bayesian analysis is conducted for ordered categorical data and the Markov Chain Monte Carlo (MCMC) algorithm is employed to draw random values of the parameters from joint posterior distributions (Arbuckle, 2014b;Grace, 2015;Poleto, Singer, & Paulino, 2011). When dichotomous variables are used in an Amos model, additional constraints must be added to identify the model (Arbuckle, 2014a;Grace, 2015;IBM, 2015).…”
Section: Discussionmentioning
confidence: 99%
“…with dropouts and/or sporadic missing observations (see e.g. Rizopoulos et al, 2008; Alfò and Maruotti, 2009; Harel and Schafer, 2009; Tsonaka et al, 2009; Lin et al, 2010; Poleto et al, 2011). Of course, different mechanisms of missingness can be considered.…”
Section: Introductionmentioning
confidence: 99%
“…Poleto, Singer & Paulino (2011a) ilustram essa perda de informação quando há interesse em se comparar a precisão de testes diagnósticos e mostram que mesmo num caso em que o mecanismo MCARé plausível, as conclusões obtidas na ACC, e outras análises que não levam em conta toda a informação disponível, podem ser equivocadas. Além de exemplificar esse fato, Poleto, Singer & Paulino (2011b) apresentam exceções em que, para algumas funções paramétricas de interesse, os estimadores obtidos na ACC podem ser (1) consistentes sob um mecanismo MAR e (2) tão eficientes quanto os do verdadeiro mecanismo MCAR.…”
Section: Modelos De Seleçãounclassified
“…Molenberghs, Goetghebeur, Lipsitz & Kenward (1999), Clarke (2002) e Clarke & Smith (2004) também discutem essas patologias. Por meio de um estudo de simulação, Poleto et al (2011b) mostraram que, tanto no caso de as estimativas de ψ estarem na fronteira do espaço paramétrico quanto no caso de falta de identificabilidade, os estimadores de máxima verossimilhança são enviesados, embora com viés menor do que aquele obtido sob a ACC se o mecanismo MNAR proposto for verdadeiro. Esses autores também mostraram que a obtenção de estimativas na fronteira do espaço paramétrico nãoé um indício de que o mecanismo de omissão seja falso e, dependendo da estrutura para o mecanismo de omissão, pode ainda ocorrer com probabilidade razoável para amostras grandes (e.g., probabilidade de 18% para n = 10 000).…”
Section: Modelos De Seleçãounclassified