Nesta tese apresentam-se desenvolvimentos metodológicos para analisar dados com omissão e também estudos delineados para compreender os resultados de tais análises. Escrutinam-se análises de sensibilidade bayesiana e clássica para dados com respostas categorizadas sujeitas a omissão. Mostra-se que as componentes subjetivas de cada abordagem podem influenciar os resultados de maneira não-trivial, independentemente do tamanho da amostra, e que, portanto, as conclusões devem ser cuidadosamente avaliadas. Especificamente, demonstra-se que distribuições a priori comumente consideradas como não-informativas ou levemente informativas podem, na verdade, ser bastante informativas para parâmetros inidentificáveis, e que a escolha do modelo sobreparametrizado também tem um papel importante. Quando há omissão em variáveis explicativas, tambémé necessário propor um modelo marginal para as covariáveis mesmo se houver interesse apenas no modelo condicional. A especificação incorreta do modelo para as covariáveis ou do modelo para o mecanismo de omissão leva a inferências enviesadas para o modelo de interesse. Trabalhos anteriormente publicados têm-se dividido em duas vertentes: ou utilizam distribuições semiparamétricas/não-paramétricas, flexíveis para as covariáveis, e identificam o modelo com a suposição de um mecanismo de omissão não-informativa, ou empregam distribuições paramétricas para as covariáveis e permitem um mecanismo mais geral, de omissão informativa. Neste trabalho analisam-se respostas binárias, combinando um mecanismo de omissão informativa com um modelo não-paramétrico para as covariáveis contínuas, por meio de uma mistura induzida pela distribuição a priori de processo de Dirichlet. No caso em que o interesse recai apenas em momentos da distribuição das respostas, propõe-se uma nova análise de sensibilidade sob o enfoque clássico para respostas incompletas que evita suposições distribucionais e utiliza parâmetros de sensibilidade de fácil interpretação. O procedimento tem, em particular, grande apelo na análise de dados contínuos, campo que tradicionalmente emprega suposições de normalidade e/ou utiliza parâmetros de sensibilidade de difícil interpretação. Todas as análises são ilustradas com conjuntos de dados reais.