2017
DOI: 10.17576/jsm-2017-4602-17
|View full text |Cite
|
Sign up to set email alerts
|

Missing Value Estimation Methods for Data in Linear Functional Relationship Model

Abstract: Missing value problem is common Data lenyap sering terjadi dalam analisis data kuantitatif. Dengan berkembangnya keupayaan pengiraan, kaedah terkini iaitu kaedah kebolehjadian maksimum merupakan antara cara yang terbaik untuk menguruskan masalah data lenyap. Di dalam kertas ini, dua kaedah gantian moden diperkenalkan iaitu jangkaan pemaksimuman (EM) dan jangkaan pemaksimum bootstrap (EMB) untuk digunakan di dalam model linear hubungan fungsian (LFRM) iaitu

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 21 publications
0
1
0
Order By: Relevance
“…Because it considers the presence of error across all parameters, EIVM is the most statistically relevant tool for predicting reactivity ratios. EIVM is classified into three types: functional, structural, and ultrastructural (Ghapor et al, 2014;Jamaliyatul et al, 2023). A functional relationship model between X and Y is when X is a mathematical variable or fixed constant.…”
Section: Introductionmentioning
confidence: 99%
“…Because it considers the presence of error across all parameters, EIVM is the most statistically relevant tool for predicting reactivity ratios. EIVM is classified into three types: functional, structural, and ultrastructural (Ghapor et al, 2014;Jamaliyatul et al, 2023). A functional relationship model between X and Y is when X is a mathematical variable or fixed constant.…”
Section: Introductionmentioning
confidence: 99%