The highly aggressive character of melanoma makes it an excellent model for probing the mechanisms underlying metastasis, which remains one of the most difficult challenges in treating cancer. We find that miR-182, member of a miRNA cluster in a chromosomal locus (7q31-34) frequently amplified in melanoma, is commonly upregulated in human melanoma cell lines and tissue samples; this up-regulation correlates with gene copy number in a subset of melanoma cell lines. Moreover, miR-182 ectopic expression stimulates migration of melanoma cells in vitro and their metastatic potential in vivo, whereas miR-182 down-regulation impedes invasion and triggers apoptosis. We further show that miR-182 over-expression promotes migration and survival by directly repressing microphthalmiaassociated transcription factor-M and FOXO3, whereas enhanced expression of either microphthalmia-associated transcription factor-M or FOXO3 blocks miR-182's proinvasive effects. In human tissues, expression of miR-182 increases with progression from primary to metastatic melanoma and inversely correlates with FOXO3 and microphthalmia-associated transcription factor levels. Our data provide a mechanism for invasion and survival in melanoma that could prove applicable to metastasis of other cancers and suggest that miRNA silencing may be a worthwhile therapeutic strategy.microRNA ͉ cancer ͉ invasion M etastasis is a central problem in cancer, yet the mechanisms underlying a cell's ability to extravasate from the primary tumor, circulate, and invade new tissue remain poorly understood. We reasoned that melanoma, one of the most notoriously invasive neoplasia, would provide an excellent model for investigating the alterations that contribute to metastasis. Melanomas are characterized by certain well-defined genetic alterations (reviewed in ref. 1) as well as frequent chromosomal aberrations associated with tumor progression (2). Recent work has also shown that melanomas display genomic alterations involving numerous microRNA genes (3). MicroRNAs (miRNAs) are endogenous noncoding small RNAs that interfere with the translation of coding messenger RNAs (mRNAs) in a sequence-specific manner (4), often to regulate processes involved in development or tissue homeostasis (5-7). Intriguingly, dysregulation of miRNAs has been found to contribute to neoplasia (8). We decided to investigate the possible contributions of miRNA dysregulation to melanoma extravasation, migration, and invasion.We compared the expression of miRNAs in a large cohort of melanoma cell lines with that of normal melanocytes. We found that miR-182, flanked by the c-MET and BRAF oncogenes in the 7q31-34 region that is frequently amplified in melanoma (9, 10), is highly expressed in metastatic melanoma cell lines and tumors, often in association with increased copy number. Moreover, we demonstrate that antisense-mediated repression of miR-182 inhibited invasion and induced melanoma cell death, whereas ectopic miR-182 up-regulation enhanced the oncogenic activity of melanoma cells in vitro ...