Proceedings of the 30th ACM International Conference on Information &Amp; Knowledge Management 2021
DOI: 10.1145/3459637.3482142
|View full text |Cite
|
Sign up to set email alerts
|

Mitigating Deep Double Descent by Concatenating Inputs

Abstract: The double descent curve is one of the most intriguing properties of deep neural networks. It contrasts the classical bias-variance curve with the behavior of modern neural networks, occurring where the number of samples nears the number of parameters. In this work, we explore the connection between the double descent phenomena and the number of samples in the deep neural network setting. In particular, we propose a construction which augments the existing dataset by artificially increasing the number of sampl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?