Interaction between land subsidence and sea level rise (SLR) increases the hazard in coastal areas, mainly for deltas, characterized by flat topography and with great social, ecological, and economic value. Coastal areas need continuous monitoring as a support for human intervention to reduce the hazard. Po River Delta (PRD, northern Italy) in the past was affected by high values of artificial land subsidence: even if at low rates, anthropogenic settlements are currently still in progress and produce an increase of hydraulic risk due to the loss of surface elevation both of ground and levees. Many authors have provided scenarios for the next decades with increased flooding in densely populated areas. In this work, a contribution to the understanding future scenarios based on the morphological changes that occurred in the last century on the PRD coastal area is provided: planimetric variations are reconstructed using two archival cartographies (1911 and 1924), 12 multi-temporal high-resolution aerial photogrammetric surveys (1933, 1944, 1949, 1955, 1962, 1969, 1977, 1983, 1990, 1999, 2008, and 2014), and four LiDAR (light detection and ranging) datasets (acquired in 2006, 2009, 2012, and 2018): obtained results, in terms of emerged surfaces variations, are linked to the available land subsidence rates (provided by leveling, GPS—global positioning system, and SAR—synthetic aperture radar data) and to the expected SLR values, to perform scenarios of the area by 2100: results of this work will be useful to mitigate the hazard by increasing defense systems and preventing the risk of widespread flooding.