We assessed the safety and efficacy of combined intravenous and aerosolized antioxidant administration to attenuate chlorine gasinduced airway alterations when administered after exposure. Adult male Sprague-Dawley rats were exposed to air or 400 parts per million (ppm) chlorine (a concentration likely to be encountered in the vicinity of industrial accidents) in environmental chambers for 30 minutes, and returned to room air, and they then received a single intravenous injection of ascorbic acid and deferoxamine or saline. At 1 hour and 15 hours after chlorine exposure, the rats were treated with aerosolized ascorbate and deferoxamine or vehicle. Lung antioxidant profiles, plasma ascorbate concentrations, airway morphology, and airway reactivity were evaluated at 24 hours and 7 days after chlorine exposure. At 24 hours after exposure, chlorine-exposed rats had significantly lower pulmonary ascorbate and reduced glutathione concentrations. Treatment with antioxidants restored depleted ascorbate in lungs and plasma. At 7 days after exposure, in chlorineexposed, vehicle-treated rats, the thickness of the proximal airways was 60% greater than in control rats, with twice the amount of mucosubstances. Airway resistance in response to methacholine challenge was also significantly elevated. Combined treatment with intravenous and aerosolized antioxidants restored airway morphology, the amount of airway mucosubstances, and airway reactivity to control levels by 7 days after chlorine exposure. Our results demonstrate for the first time, to the best of our knowledge, that severe injury to major airways in rats exposed to chlorine, as characterized by epithelial hyperplasia, mucus accumulation, and airway hyperreactivity, can be reversed in a safe and efficacious manner by the postexposure administration of ascorbate and deferoxamine.Keywords: epithelial injury; epithelial repair; mucosubstances; ascorbate; deferoxamine; aerosol Chlorine is essential to global industry and to global public health. According to the World Chlorine Council (http://www. worldchlorine.org), 14.4 million metric tons were produced in North America in 2008, and 62.8 million metric tons were produced globally. Water treatment makes up only 5% of the world's use of chlorine. The majority of chlorine is used in the production of plastics such as polyvinyl chloride (1). It is also used as a bleaching agent for pulp and paper production, as feedstock in the production of chlorinated solvents used in metalworking, in dry cleaning, in electronics, and in pharmaceutical production (1-6).Only 20 American states contain facilities that produce chlorine, but every American state has facilities that use chlorine. This results in the shipping of chlorine by railcar, and increases the potential for large-scale accidents. According to the Environmental Protection Agency, chlorine gas was related to 518 serious accidents over a 5-year period during the 1990s (1). Multiple-casualty exposures to chlorine have resulted from industrial accidents involving chlorine ta...