Traumatic brain injury (TBI), which is a global public health concern, can take various forms, from mild concussions to blast injuries, and each damage type has a particular mechanism of progression. However, TBI is a condition with complex pathophysiology and heterogenous clinical presentation, which makes it difficult to model for in vitro and in vivo studies and obtain relevant results that can easily be translated to the clinical setting. Accordingly, the pharmacological options for TBI management are still scarce. Since a wide spectrum of processes, such as glucose homeostasis, food intake, body temperature regulation, stress response, neuroprotection, and memory, were demonstrated to be modulated after delivering glucagon-like peptide 1 (GLP-1) or GLP-1 receptor agonists into the brain, we aimed to speculate on their potential role in TBI management by comprehensively overviewing the preclinical and clinical body of evidence. Based on promising preclinical data, GLP-1 receptor agonists hold the potential to extend beyond metabolic disorders and address unmet needs in neuroprotection and recovery after TBI, but also other types of central nervous system injuries such as the spinal cord injury or cerebral ischemia. This overview can lay the basis for tailoring new research hypotheses for future in vitro and in vivo models in TBI settings. However, large-scale clinical trials are crucial to confirm their safety and efficacy in these new therapeutic applications.