Normal broadband lasers with collinear polychromatic components have immense potential for mitigating laser plasma instabilities (LPIs). However, the projection complexity of collinear polychromatic light (CPL) is a significant challenge owing to the demand for a large bandwidth and beamlet number. Here, we propose a theoretical LPI model and optical design for non-collinear polychromatic light (NCPL), which has a small angle $\sim4^\circ$ and large frequency difference $\sim$1\% between the double-color beamlets. LPI models of the NCPL demonstrate a decoupling threshold for the shared daughter waves under a multibeam configuration. Compared with the CPL, both the growth rate and saturation level of LPIs are greatly reduced by using the NCPL. The two- and three-dimensional simulation results indicate that the NCPL reduces the absolute and convective decoupling thresholds of the CPL and is sufficient to effectively mitigate the reflectivity, hot-electron generation, and intensity of cross-beam energy transfer. An optical design for the efficient generation of ultraviolet NCPL has been presented based on the unsaturated optical parametric amplification and non-collinear sum-frequency generation.