The investigation on tin (Sn) whiskers formation has been widely applied in the field of lead-free electronic packaging. This is due to the fact that use of the Sn–Pb finishes has converted to Pb-free finishes in the electronic industry. Sn whiskers can grow long enough to cause a short circuit, which affects electronic devices’ reliability. This study investigates Sn whiskers’ formation in the thin Sn–0.7Cu–0.05Ga Pb-free solder under the influence of electromigration and thermal ageing for surface finish applications. The samples were stored in ambient conditions for 1000 h before being exposed to electromigration and thermal ageing to study the corresponding whiskers’ growth. A scanning electron microscope (SEM) was used to study the Sn whiskers’ microstructure, while an optical microscope (OM) was utilized to investigate the IMC layers in the samples. The results show that the addition of 0.05 wt.% gallium (Ga) decreased the Sn whisker’s length and growth density while simultaneously refining the IMC layers. Synchrotron micro-XRF (µ-XRF) shows the existence and distribution of Ga addition in both electromigration and thermal ageing samples. The shear test was used to determine the solder alloys’ mechanical properties. As a result, the addition of Ga to the Sn–0.7Cu solder improved the fracture morphology of solder joints. In conclusion, Ga’s addition resulted in decreasing Sn whisker formation and refining of the IMCs while also increasing the shear strength of the Sn–0.7Cu solder by ~14%.