The nervous system has long been suggested as a key tissue that defines life span. The identity of neuronal cell types is established during development and maintained throughout adulthood due to the expression of specific neuronal genes coding for ion channels, neurotransmitters and neuropeptides, G-protein-coupled receptors, motor proteins, recognition and adhesion molecules. In this paper, we review data on the role of neuronal genes in Drosophila melanogaster life span control. Several pathways responsible for life span regulation are also important for the development of the nervous system. Genes involved in insulin-like, Target of Rapamycin, Janus Kinase/Signal Transducer and Activator of Transcription and cell polarity pathways, a number of global regulators and transcription factors play key roles both in aging and longevity control and in shaping the nervous system as a network of specialized neuronal cells in early development. Is their impact on life span related, at least partially, to their developmental functions or is it explained by other pleiotropic influences later in life? In this paper, we address this question based on the published data and our own findings.