Selective elimination of mitochondria by autophagy (mitophagy) is a crucial developmental process to dispose of disintegrated or superflous organelles. However, little is known about underlying regulatory mechanisms. We have investigated mitophagy in response to conditional overexpression of the a2 mating-type locus gene lga2, which encodes a small mitochondrial protein critically involved in uniparental mitochondrial DNA inheritance during sexual development of Ustilago maydis. In this study, we show that conditional overexpression of lga2 efficiently triggers mitophagy that is dependent on atg8 and atg11, consistent with selective autophagy. lga2-triggered mitophagy is preceded by mitochondrial dysfunction, including depletion of mitochondrial RNA transcripts, and is mechanistically distinct from starvation-induced mitophagy despite a common requirement for atg11. In particular, lga2-triggered mitophagy strongly depends on the mitochondrial fission factor Dnm1, but it is only slightly affected by N-acetylcysteine, which is an inhibitor of starvation-induced mitophagy. To further delineate the role of mitochondrial fission, we analyzed lga2 effects in ⌬fis1 mutants. This revealed that mitochondrial fragmentation was only attenuated and mitophagy was largely unaffected. In further support of a Fis1-independent role for Dnm1, mitochondrial association of green fluorescent protein-tagged Dnm1 as well as Dnm1-opposed mitochondrial fusion during sexual development were fis1 independent. In conclusion, our results specify the role of the mitochondrial fission factor Dnm1 in mitophagy and uncover differences between mitophagy pathways in the same cellular system.