Summary
Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However a possible molecular mechanism for the sex-bias in physiological adaptation to oxidative stress remains unclear. Here we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex required the conserved mitochondrial Lon protease and was associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress was lost with age in both sexes. Transgenic expression of transformer gene during development transformed chromosomal males into pseudo-females, and conferred the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction and H2O2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminated the female-specific Lon isoform expression, Lon proteolytic activity induction and H2O2 stress adaptation, and produced the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual-dimorphism in human disease.