Plants are a highly advanced kingdom of living organisms on the earth. They survive under all climatic and weather variabilities, including low and high temperature, rainfall, radiation, less nutrients, and high salinity. Even though they are adapted to various environmental factors, which are variable, the performance of a crop will be compensated under sub/supra optimal conditions. Hence, current and future climate change factors pose a challenge to sustainable agriculture. Photosynthesis is the primary biochemical trait of crops that are affected by abiotic stress and elevated CO2 (eCO2). Under eCO2, the C3 legumes could perform better photosynthesis over C4 grasses. The associated elevated temperature promotes the survival of the C4 crop (maize) over C3 plants. In the American Ginseng, the elevated temperature promotes the accumulation of phytocompounds. Under less water availability, poor transpirational cooling, higher canopy temperatures, and oxidative stress will attenuate the stability of the membrane. Altering the membrane composition to safeguard fluidity is a major tolerance mechanism. For protection and survival under individual or multiple stresses, plants try to undergo high photorespiration and dark respiration, for instance, in wheat and peas. The redox status of plants should be maintained for ROS homeostasis and, thereby, plant survival. The production of antioxidants and secondary metabolites may keep a check on the content of oxidating molecules. Several adaptations, such as deeper rooting, epicuticular wax formation such as peas, and utilization of non-structural carbohydrates, i.e., wheat, help in survival. In addition to yield, quality is a major attribute abridged or augmented by climate change. The nutrient content of cereals, pulses, and vegetables is reduced by eCO2; in aniseed and Valeriana sp., the essential oil content is increased. Thus, climate change has perplexing effects in a species-dependent manner, posing hurdles in sustainable crop production. The review covers various scientific issues interlinked with challenges of food/nutritional security and the resilience of plants to climate variability. This article also glimpses through the research gaps present in the studies about the physiological effects of climate change on various crops.