Abnormal glucose handling in the proximal tubule may play an important role in the development of diabetic nephropathy. Thus, the present study was designed to examine the effect of high glucose on alpha-methyl-D-glucopyranoside (alpha-MG) uptake and its signaling pathways in the primary cultured rabbit renal proximal tubule cells (PTCs). When PTCs were preincubated with 25 or 50 mM glucose for 4 h, 25 or 50 mM glucose significantly inhibited alpha-MG uptake, while 25 or 50 mM mannitol and L-glucose did not affect. Actinomycin D and cycloheximide did not block the effect of high glucose on alpha-MG uptake. Twenty-five millimoles glucose-induced inhibition of alpha-MG uptake was blocked by mepacrine and AACOCF(3), phospholipase A(2) (PLA(2)) inhibitors. Twenty-five millimoles of glucose, not mannitol or L-glucose, significantly increased the [(3)H]-arachidonic acid (AA) release compared to control. In addition, the 25 mM glucose-induced [(3)H]-AA release was completely blocked by mepacrine or AACOCF(3). Indomethacin, a cyclooxygenase inhibitor, blocked the high glucose-induced inhibition of alpha-MG uptake, although econazole, cytochrome P-450 a epoxygenase inhibitor, and nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, did not. On the other hand, staurosporine and bisindolylmaleimide I, protein kinase C (PKC) inhibitors, blocked 25 mM glucose-induced increase of [(3)H]-AA release and inhibition of alpha-MG uptake. However, neomycin, U 73122, and phospholipase c(PLC) inhibitors did not block the effect of 25 mM glucose on [(3)H]-AA release and alpha-MG uptake. Pretreatment of methoxyverapamil, an L-type Ca(2+) channel blocker, abolished 25 mM glucose-induced increase of [(3)H]-AA release. Indeed, 25 mM glucose increased translocation of cPLA(2) from cytosolic fraction to membrane fraction. In conclusion, the present results demonstrate that high glucose inhibits alpha-MG uptake by the increase of AA release via the activation of PKC.