A subset of asthma patients suffer from glucocorticoid (GC) insensitivity. T-helper cell type 17 cells have an emerging role in GC insensitivity, although the mechanisms are still poorly understood.We investigated whether interleukin (IL)-17A induces GC insensitivity in airway epithelium by studying its effects on responsiveness of tumour necrosis factor (TNF)-a-induced IL-8 production to budesonide in human bronchial epithelial 16HBE cells. We unravelled the underlying mechanism by the use of specific pathway inhibitors, reporter and overexpression constructs and a histone deacetylase (HDAC) activity assay.We demonstrated that IL-17A-induced IL-8 production is normally sensitive to GCs, while IL-17A pre-treatment significantly reduced the sensitivity of TNF-a-induced IL-8 production to budesonide. IL-17A activated the p38, extracellular signal-related kinase (ERK) and phosphoinositide-3-kinase (PI3K) pathways, and the latter appeared to be involved in IL-17A-induced GC insensitivity. Furthermore, IL-17A reduced HDAC activity, and overexpression of HDAC2 reversed IL-17A-induced GC insensitivity. In contrast, IL-17A did not affect budesonide-induced transcriptional activity of the GC receptor, suggesting that IL-17A does not impair the actions of the ligated GC receptor.In conclusion, we have shown for the first time that IL-17A induces GC insensitivity in airway epithelium, which is probably mediated by PI3K activation and subsequent reduction of HDAC2 activity. Thus, blockade of IL-17A or downstream signalling molecule PI3K may offer new strategies for therapeutic intervention in GC-insensitive asthma.