Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Multiple myeloma (MM) is a highly heterogeneous hematological malignancy that is currently incurable. Individualized therapeutic approaches based on accurate risk assessment are essential for improving the prognosis of MM patients. Nevertheless, current prognostic models for MM exhibit certain limitations and prognosis heterogeneity still an unresolved issue. Recent studies have highlighted the pivotal involvement of mitochondrial autophagy in the development and drug sensitivity of MM. This study seeks to conduct an integrative analysis of the prognostic significance and immune microenvironment of mitophagy-related signature in MM, with the aim of constructing a novel predictive risk model. GSE4581 and GSE47552 datasets were acquired from the Gene Expression Omnibus database. MM-differentially expressed genes (DEGs) were identified by limma between MM samples and normal samples in GSE47552. Mitophagy key module genes were obtained by weighted gene co-expression network analysis in the Cancer Genome Atlas (TCGA)-MM dataset. Mitophagy DEGs were identified by the overlap genes between MM-DEGs and mitophagy key module genes. Prognostic genes were selected through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analysis, and a risk model was subsequently constructed based on these prognostic genes. Subsequently, the MM samples were stratified into high- and low-risk groups based on their median risk scores. The validity of the risk model was further evaluated using the GSE4581 dataset. Moreover, a nomogram was developed using the independent prognostic factors identified from the risk score and various clinical indicators. Additionally, analyses were conducted on immune infiltration, immune scores, immune checkpoint, and chemotherapy drug sensitivity. The 17 mitophagy DEGs were obtained by intersection of 803 MM-DEGs and 1084 mitophagy key module genes. Five prognostic genes (CDC6, PRIM1, SNRPB, TOP2A, and ZNF486) were selected via LASSO and univariate cox regression analyses. The predictive performance of the risk model, which was constructed based on the five prognostic genes, demonstrated favorable results in both TCGA-MM and GSE4581 datasets as indicated by the receiver operating characteristic (ROC) curves. In addition, calibration curve, ROC curve, and decision curve analysis curve corroborated that the nomogram exhibited superior predictive accuracy for MM. Furthermore, immune analysis results indicated a significant difference in stromal scores of two risk groups categorized on median risk scores. And four immune checkpoints (CD274, CTLA4, LAG3, and PDCD1LG2) showed significant differences in different risk groups. The analysis of chemotherapy drug sensitivity revealed that etoposide and doxorubicin, which target TOP2A , exhibited superior treatment outcomes in the high-risk group. A novel prognostic model for MM was developed and validated, demonstrating significant potential in predicting patient outcomes and providing valuable guidance for ...
Multiple myeloma (MM) is a highly heterogeneous hematological malignancy that is currently incurable. Individualized therapeutic approaches based on accurate risk assessment are essential for improving the prognosis of MM patients. Nevertheless, current prognostic models for MM exhibit certain limitations and prognosis heterogeneity still an unresolved issue. Recent studies have highlighted the pivotal involvement of mitochondrial autophagy in the development and drug sensitivity of MM. This study seeks to conduct an integrative analysis of the prognostic significance and immune microenvironment of mitophagy-related signature in MM, with the aim of constructing a novel predictive risk model. GSE4581 and GSE47552 datasets were acquired from the Gene Expression Omnibus database. MM-differentially expressed genes (DEGs) were identified by limma between MM samples and normal samples in GSE47552. Mitophagy key module genes were obtained by weighted gene co-expression network analysis in the Cancer Genome Atlas (TCGA)-MM dataset. Mitophagy DEGs were identified by the overlap genes between MM-DEGs and mitophagy key module genes. Prognostic genes were selected through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analysis, and a risk model was subsequently constructed based on these prognostic genes. Subsequently, the MM samples were stratified into high- and low-risk groups based on their median risk scores. The validity of the risk model was further evaluated using the GSE4581 dataset. Moreover, a nomogram was developed using the independent prognostic factors identified from the risk score and various clinical indicators. Additionally, analyses were conducted on immune infiltration, immune scores, immune checkpoint, and chemotherapy drug sensitivity. The 17 mitophagy DEGs were obtained by intersection of 803 MM-DEGs and 1084 mitophagy key module genes. Five prognostic genes (CDC6, PRIM1, SNRPB, TOP2A, and ZNF486) were selected via LASSO and univariate cox regression analyses. The predictive performance of the risk model, which was constructed based on the five prognostic genes, demonstrated favorable results in both TCGA-MM and GSE4581 datasets as indicated by the receiver operating characteristic (ROC) curves. In addition, calibration curve, ROC curve, and decision curve analysis curve corroborated that the nomogram exhibited superior predictive accuracy for MM. Furthermore, immune analysis results indicated a significant difference in stromal scores of two risk groups categorized on median risk scores. And four immune checkpoints (CD274, CTLA4, LAG3, and PDCD1LG2) showed significant differences in different risk groups. The analysis of chemotherapy drug sensitivity revealed that etoposide and doxorubicin, which target TOP2A , exhibited superior treatment outcomes in the high-risk group. A novel prognostic model for MM was developed and validated, demonstrating significant potential in predicting patient outcomes and providing valuable guidance for ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.