Based on the circular code theory, we define a new function f that quantifies the property of reading frame retrieval (RFR) of genes from their codon usage. This RFR function f is computed on a massive scale in genes of genomes of bacteria, eukaryotes and archaea. By expressing f as a function of the mean number n of codons per gene, a "universal" property is identified, whatever the kingdom: the reading frame retrieval is enhanced in large genes. By investigating this property according to the theory developed, a Spearman's rank correlation with a strong negative coefficient is observed between the codon usage dispersion d (from the uniform codon distribution 1 64 ) and the RFR function f , whatever the kingdom ( p-values < 10 −180 in bacteria, < 10 −61 in eukaryotes and < 10 −159 in archaea). Thus, the reading frame retrieval is enhanced with the codon usage dispersion. Furthermore, this approach identifies a "genome centre" from which emerge two distinct "genome arms": an upper arm and a lower arm, respectively, above and below the linear regression. The RFR function by itself or combined with classical methods (alignment, phylogeny) could also be a new approach to classify the genomes in the future.