In this paper, a novel analytical modeling of the growth and dissolution of precipitates in substitutional alloys is presented. This model uses an existing solution for the shape-preserved growth of ellipsoidal precipitates in the mixed-mode regime, which takes into account the interfacial mobility of the precipitate. The dissolution model is developed by neglecting the transient term in the mass conservation equation, keeping the convective term. It is shown that such an approach yields the so-called reversed-growth approximation. A time discretization procedure is proposed to take into account the evolution of the solute concentration in the matrix as the phase transformation progresses. The model is applied to calculate the evolution of the radius of spherical -Al2Cu precipitates in an Al rich matrix at two different temperatures, for which growth or dissolution occurs. A comparison of the model is made, with the results obtained using the numerical solver DICTRA. The very good agreement obtained for cases where the interfacial mobility is very high indicates that the time discretization procedure is accurate.