The symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (MM-SQC) shows the great potential in the treatment of the nonadiabatic dynamics of complex systems. We performed the comprehensive benchmark calculations to evaluate the performance of the MM-SQC method in various site-exciton models with respect to the accurate results of quantum dynamics method multilayer multiconfigurational time-dependent Hartree (ML-MCTDH). The parameters of the site-exciton models are chosen to represent a few of prototypes used 2 in the description of photoinduced excitonic dynamics processes in photoharvesting systems and organic solar cells, which include the rather board situations with the fast or slow bath and different system-bath couplings. When the characteristic frequency of the bath is low, the MM-SQC method performs extremely well, and it gives almost the identical results to those of ML-MCTDH. When the fast bath is considered, the deviations exist between the MM-SQC and ML-MCTDH results if the high-frequency bath modes are improperly treated by the classical manner. When the so-called adiabatic renormalization was employed to construct the reduced Hamiltonian by freezing high-frequency modes, the MM-SQC dynamics can give the results comparable to the ML-MCTDH ones. Thus, the MM-SQC method itself provide reasonable results in all test site-exciton models, while the proper treatments of the bath modes must be employed. The possible dependence of the MM-SQC dynamics on the different initial sampling methods for the nuclear degrees of freedom is also discussed.3