“…Acellular biomaterials offer various advantageous properties such as lack of donor-site morbidity, absence of cell culture costs, off the shelf availability, fewer regulatory issues, and application of one-stage surgical procedures ( Brouwer et al, 2011 ; Efe et al, 2012 ). Many researchers have explored the approach of implanting acellular biomaterials and investigated the use of various biomaterials in vivo , such as natural (e.g., collagen ( Breinan et al, 2000 ; Buma et al, 2003 ; Enea et al, 2013 ; Wakitani et al, 1994 ), chitosan ( Abarrategi et al, 2010 ; Bell et al, 2013 ; Guzman-Morales et al, 2014 ; Hoemann et al, 2007 ), alginate ( Igarashi et al, 2012 ; Mierisch et al, 2002 ; Sukegawa et al, 2012 ) and hyaluronic acid ( Aulin et al, 2013 ; Kayakabe et al, 2006 ; Marmotti et al, 2012 ; Solchaga et al, 2000 )) and synthetic polymers (e.g., polycaprolactone ( Christensen et al, 2012 ; Martinez-Diaz et al, 2010 ; Mrosek et al, 2010 ), polyvinyl alcohol ( Coburn et al, 2012 ; Holmes, Volz & Chvapil, 1975 ; Krych et al, 2013 ) and poly(lactic-co-glycolic acid) ( Athanasiou, Korvick & Schenck Jr, 1997 ; Chang et al, 2012 ; Cui, Wu & Hu, 2009 ; Fonseca et al, 2014 )). To combine the advantageous properties of these materials, multilayered biomaterials (e.g., β -tricalcium phosphate-hydroxyapatite/hyaluronate-atelocollagen ( Ahn et al, 2009 ), ceramic bovine bone-gelatin/gelatin-chondroitin sulfate-sodium hyaluronate ( Deng et al, 2012 )), blends (e.g., poly(glycolic acid)-hyaluronic acid ( Erggelet et al, 2009 ) and type I collagen-hyaluronic acid-fibrinogen hydrogel ( Lee et al, 2012 )) have been constructed.…”