In the failing heart, iNOS is expressed by both macrophages and cardiomyocytes. We hypothesized that inflammatory cell-localized iNOS exacerbates left ventricular (LV) remodeling. Wild-type (WT) C57BL/6 mice underwent total body irradiation and reconstitution with bone marrow from iNOS−/− mice (iNOS−/−c) or WT mice (WTc). Chi-meric mice underwent coronary ligation to induce large infarction and ischemic heart failure (HF), or sham surgery. After 28 days, as compared with WTc sham mice, WTc HF mice exhibited significant (p < 0.05) mortality, LV dysfunction, hypertrophy, fibrosis, oxidative/nitrative stress, inflammatory activation, and iNOS upregulation. These mice also exhibited a ∼twofold increase in circulating Ly6Chi pro-inflammatory monocytes, and ∼sevenfold higher cardiac M1 macrophages, which were primarily CCR2– cells. In contrast, as compared with WTc HF mice, iNOS−/− c HF mice exhibited significantly improved survival, LV function, hypertrophy, fibrosis, oxidative/nitrative stress, and inflammatory activation, without differences in overall cardiac iNOS expression. Moreover, iNOS−/−c HF mice exhibited lower circulating Ly6Chi monocytes, and augmented cardiac M2 macrophages, but with greater infiltrating monocyte-derived CCR2+ macrophages vs. WTc HF mice. Lastly, upon cell-to-cell contact with naïve cardiomyocytes, peritoneal macrophages from WT HF mice depressed contraction, and augmented cardiomy-ocyte oxygen free radicals and peroxynitrite. These effects were not observed upon contact with macrophages from iNOS−/− HF mice. We conclude that leukocyte iNOS is obligatory for local and systemic inflammatory activation and cardiac remodeling in ischemic HF. Activated macrophages in HF may directly induce cardiomyocyte contractile dysfunction and oxidant stress upon cell-to-cell contact; this juxtacrine response requires macrophage-localized iNOS.