We present a comprehensive study of the equilibrium properties of two codeposited species for an alloy that forms an ideal solution, on a one-dimensional chain. By use of a cluster description we provide exact formulae of the coverages, the total density of clusters, the cluster size distribution, and the chemical composition of each cluster. These analytical results, that are proved to be in agreement with Monte Carlo simulations, strongly differ from the ones derived in the mean-field framework. Indeed, we show by depicting the codeposit at the macroscopic, mesoscopic, and atomic scales, that its features are to be related to the chemical heterogeneities at the edges of the clusters.