Low-strength saline wastewater may be generated by tourist facilities, industries and communities located in coastal areas. Sea salts, mostly chlorides, when present in wastewaters at high concentrations, can cause inhibition on biological treatment processes. In this study, a laboratory down-flow anaerobic fixed bed reactor (DFAFBR) was used for treating saline wastewater. This wastewater was simulated by dilution of piggery manure in a synthetic saline water to obtain a final total COD concentration in the range of 1100-2900 mg/l and a salt concentration of 15 g/l. The DFAFBR was operated at hydraulic retention times (HRT) of 96, 48, 24 and 12 h. The results showed that at sea salts concentrations in the range from 5 to 15 g/l, total coliform concentration reduction efficiencies higher than 97% were achieved. A decrease in the total and faecal coliform concentration reduction efficiencies from 99.5% to 90.5% and 92.5%, respectively, was observed when the HRT decreased from 96 to 12 h. Enumeration of coliform bacteria isolated from the biofilm in different zones of the reactor showed that more than 94% of the total amount was removed in the upper zone. A HRT of 24 h was required to obtain total COD, organic-N, total-P and faecal coliform concentration reduction efficiencies higher than 72%, 51%, 39% and 98%, respectively. A concentration of 8.4 g/l for chlorides, 1.25 g/l for sulphates and 4.6 g/l for sodium did not affect the process performance.