Micromixers are of considerable significance in many microfluidics system applications, from chemical reactions to biological analysis processes. Passive micromixers, which rely solely on their geometry, have the advantages of low cost and a less-complex fabrication process. Dean vortices seen in curved microchannels are one of the useful tools to enhance micromixing. In this study, the effects of curve angle on micromixing were experimentally investigated in three curved serpentine micromixers consisting of ten segments with curve angles of 180 ° , 230 ° and 280 ° , at Dean numbers between 12 and 87. To characterize and compare the performance of the micromixers, fluorescence intensity maps and mixing indices were utilized. Accordingly, the micromixer having segments with 280 ° curve angle had significantly higher mixing index values up to the Dean number 60 and outperformed the other two micromixers. This was due to the severe distortion of flow streamlines by Dean vortices and the occurrence of chaotic advection at lower Dean numbers. Beyond the Dean number of 70, no difference was observed in the performance of the micromixers and the mixing index at their outlets had the asymptotic value of 0.93 ± 0.02. Furthermore, the flow behavior of the micromixers was numerically simulated to provide further insight about the mixing phenomena.