The intensive development of medical science has led to an increase in the availability and use of pharmaceutical products. However, nowadays, most of scientific attention has been paid to the native forms of pharmaceuticals, while the transformation products (TPs) of these substances, understood herein as metabolites, degradation products, and selected enantiomers, remain largely unexplored in terms of their characterization, presence, fate and effects within the natural environment. Therefore, the main aim of this study was to evaluate the toxicity of seven native compounds belonging to different therapeutic groups (nonsteroidal anti-inflammatory drugs, opioid analgesics, beta-blockers, antibacterial and anti-epileptic drugs), along with the toxicity of their 13 most important TPs. For this purpose, an ecotoxicological test battery, consisting of five organisms of different biological organization was used. The obtained data shows that, in general, the toxicity of TPs to the tested organisms was similar or lower compared to their parent compounds. However, for example, significantly higher toxicity of the R form of ibuprofen to algae and duckweed, as well as a higher toxicity of the R form of naproxen to luminescent bacteria, was observed, proving that the risk associated with the presence of drug TPs in the environment should not be neglected.