Streams and rivers are characterised by the presence of various chemicals of emerging concern (CECs), including pesticides, pharmaceuticals, personal care products, and industrial chemicals. While these chemicals are found usually only in low (ng/L) concentrations, they might still harm aquatic life and disrupt the ecological balance of aquatic ecosystems due to their high ecotoxicological potency. Environmental risk assessments that account for the complexity of exposures are needed in order to evaluate the toxic pressure of these chemicals, which also provide suggestions for risk mitigation and management, if necessary. Currently, most studies on the co-occurrence and environmental impacts of CECs are conducted in countries of the Global North, leaving massive knowledge gaps in countries of the Global South. In this study, we implement a multi-scenario risk assessment strategy to improve the assessment of both the exposure and hazard components in the chemical risk assessment process. Our strategy incorporates a systematic consideration and weighting of CECs that were not detected, as well as an evaluation of the uncertainties associated with Quantitative Structure-Activity Relationships (QSARs) predictions for chronic ecotoxicity. Furthermore, we present a novel approach to identifying mixture risk drivers. To expand our knowledge beyond well-studied aquatic ecosystems, we applied this multi-scenario strategy to the River Aconcagua basin of Central Chile. The analysis revealed that the concentrations of CECs exceeded acceptable risk thresholds for selected organism groups and the most vulnerable taxonomic groups. Streams flowing through agricultural areas and sites near the river mouth exhibited the highest risks. Notably, the eight risk drivers among the 153 co-occurring chemicals accounted for 66-92% of the observed risks in the river basin. Six of them are pesticides and pharmaceuticals, chemical classes known for their high biological activity in specific target organisms.