2022
DOI: 10.3390/app122111084
|View full text |Cite
|
Sign up to set email alerts
|

Mixup Based Cross-Consistency Training for Named Entity Recognition

Abstract: Named Entity Recognition (NER) is at the core of natural language understanding. The quality and amount of datasets determine the performance of deep-learning-based NER models. As datasets for NER require token-level or word-level labels to be assigned, annotating the datasets is expensive and time consuming. To alleviate efforts of manual anotation, many prior studies utilized weak supervision for NER tasks. However, using weak supervision directly would be an obstacle for training deep networks because the l… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 30 publications
0
0
0
Order By: Relevance